Embryonic development of neural circuits

The mammalian nervous system is composed of billions of neurons that connect to their targets with remarkable precision and order. Such organisation is an evolutionally conserved feature of the nervous system and underpins its ability to form a diverse array of functioning neural circuits. The neuroanatomical characteristics that underlie functional organisation are initially formed during embryonic development. However, the molecular and cellular mechanisms that determine embryonic circuit formation remain poorly understood.

 We utilise the developing somatosensory system in the spinal cord as a tractable model to study how neural circuits are established during early embryonic development (e.g. Figure 1). Our focus is to explore the molecular and cellular mechanisms that dictate cell body settling position and axonal trajectory and examine the consequences of these anatomical choices for neural connectivity. Our laboratory uses wide range experimental approaches such as mammalian genetics, live imaging, biochemistry, classical embryology, cell and molecular biology.

Figure 1. Lhx2 and Lhx9 are critical for ventral midline crossing of dI1 commissural neurons. In control mice dI1 commissural neurons cross the ventral midline of the spinal cord. In mutant (Lhx2/Lhx9) double knockout mice dI1 commissural neurons fail to cross the ventral midline. Images from Wilson et al Neuron, 59, 413-424, 2008.

The work in our group is critical for a general understanding of the developmental circuitry that gives rise to somatosensory perception in animals. The aim is to use this model system to identify fundamental principles in the development of neural connectivity. Moreover, such studies are important in understanding the molecular etiology of nervous system disorders and is a critical first step for designing strategies to restore function to a damaged nervous system.

News from the lab:
http://www.dana.org/News/Axons_Help_New_Neurons_Travel_During_Development/

Biographical information: Profiles of Leading Women Scientists.
http://www.academia-net.org/profil/dr-phd-sara-wilson/1488151

Opportunities:
We currently have opportunities for new team members. If you would like to know more please do not hesitate to contact me.
Examwork 30 hpPostdoctoral Fellowship 2018

 


Page Editor: Lina Sollén

Print page

Sara Wilson

Contact Information

PhD, Principal Investigator

Umeå Centre for Molecular Medicine (UCMM)
By. 6M 4th floor
Umeå University, S-901 87 Umeå, Sweden
E-mail: sara.wilson@umu.se
Phone: +46 (0)90 785 25 23
Fax : +46 (0)90 785 44 00